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EFFECTS OF TOROIDAL FORCES IN CURRENT LOOPS
EMBEDDED IN A BACKGROUND PLASMA

I. INTRODUCTION

Observation shows that the solar corona is filled with complicated

structures. It is generally believed that magnetic fields and currents

play important roles in the structuring and dynamics of the coronal

plasmas. Among the wide variety of possible configurations, loop-'like

structures have received considerable attention because of their prevalence

and relative simplicity. In addition, the Skylab (1973) results indicate

that a significant number of flare events may be associated with bipolar

magnetic structures. Loop structures have also been studied in the context

of coronal heating and loop-type coronal transients. Some of the possible

loop structures include simple loops, loops embedded in complex structures

and arcades of loops. In addition, it has been suggested that magnetic

loops may play a role in the structure of other astrophysical objects such

as the coronae of accretion disks (Galeev, Rosner, and Vaiana 1979). It is

clear that properties of loopAlike magnetic and current structures can have

profound implications for the dynamics of plasmas in the solar corona and

similar astrophysical systems. *.,%
Much work has been done to investigate the properties of various loop-

like structures such as their MHD, thermal and radiative properties. This

paper will primarily deal with certain MHD aspects. In the area of MHD

studies, a considerable of amount of work has been done on equilibrium loop

models as can be found in a number of reviews including Priest(1981), Brown

and Smith(1980), Sturrock(1980) and Svestka(1976), and numerous references

contained therein. Although magnetic structures are generally complex,

simplified geometries have been used to study the basic properties. One

configuration that has received considerable attention is that of discrete

current loops (e.g., Chiuderi, Giachetti, and Van Hoven, 1977; Hood and

Manuscript approved July 23, 1987.



Priest 1979). In these works, bipolar loops were approximated by straight

cylinders. However, it is known (Krall and Trivelpiece 1973) that current-

carrying plasmas with curvature experience certain forces which arise from

the slight imbalance in the JxB and yp forces, henceforth referred to as

"toroidal forces". Thus, by using straight-cylinder approximations, these

forces due to curvature were neglected. Other tractable models often

studied include force-free configurations (see, for example, Sakurai 1981;

Aly 1984; Yang, Sturrock, and Antiochos 1986). However, more realistic

systems are generally three-dimensional and need not be force-free. As a

result, attempts have been made to generalize to three-dimensional non-

force-free configurations. For example, Low (1985a; 1985b) discussed a

class of three-dimensional structures. In addition, Low (1982) discussed

an isolated current loop embedded in a field-6free plasma. However, in

these models, the current in the solar radial direction is zero so that

these models are restrictive.

An important property of a solar current loop is that it has

curvature, giving rise to toroidal forces. This aspect of MHD forces has

received only limited attention. Previously, Xue and Chen (1983),

henceforth refered to as Paper 1, considered the MHD equilibrium and

stability properties of current loops embedded in a background plasma. In

this work, one class of non-force-free "semi-"toroidal" equilibria which
-1

satisfies c J x B - Vp - 0 was studied. The intrinsic curved geometry and

the toroidal forces were explicitly taken into account. It was found that

toroidal equilibrium force balance imposes geometrical constraints on

physical quantities such as pressure and magnetic field. Figure 1 shows a

schematic drawing of an isolated current loop. The subscripts "t" and "p"

refer, respectively, to the toroidal and poloidal components of J and B.

One interesting property of this class of equilibria is that they are

stable to gross MHD modes. Specifically, it was found that the stability

conditions for the sausage mode, kink mode and the Mercier criterion are

satisfied. This is consistent with the apparent longevity of some loopn

like structures in the solar corona. For some other MHD stability

considerations, see, for example, Priest (1979) and Van Hoven (1981).

Loop models have also been developed for phenomena exhibiting a wide

range of motion such as coronal transients (MacQueen et al., 1974).

Mouschovias and Poland (1977) proposed a model of freely moving loops with

2



the magnetic forces balanced by gravity. Anzer (1978) and Van Tend (1979)

used a simple ring current driven by the Lorentz force. This force is

similar in nature to the toroidal forces discussed in Paper 1. In Anzer's

model, an idealized current loop carrying only a toroidal current was used,

without poloidal current and pressure gradient. By considering the r

resulting Lorentz force and gravity, the dynamics of the apex of the loop

were studied. It was found that a weak magnetic field of the order of IG

is sufficient to drive coronal transients to velocities of several hundred 0.

kilometers per second. No MHD equilibrium consideration of the initial .

loop was given in this work. Yeh and Dryer (1981) noted that a net force
in the major radial direction is insufficient to drive a loop unless the

force acts to accelerate each element of the loop plasma. They then

proposed that buoyant force may play an important role. However, a current

distribution with curvature can undergo net traslational motion in the

major radial direction under the action of the toroidal forces referred to

earlier (see, for example, Krall and Trivelpiece 1973) with the pressure

gradient providing the coupling of the plasma elements.

In point of fact, numerous energetic effects showing varying degrees L

of motion do occur in the solar corona. For example, slow loop expansion

may take place prior to flares, followed by rapid expansion at flare

onset. In addition, mass motion may be manifested in the form of Type II

and Type IV bursts, coronal mass ejections, etc. For less dramatic

effects, quasi-stationary magnetic loops may exhibit much slower motion.

The significance and possible mechanisms of "mechanical energy" output in

the flare energy budget have been discussed extensively in a review paper

by Webb et al (1980) and references contained therein. Because the corona

is essentially fully ionized, we expect that mass motions and magnetic

fields are integrally related.

Toroidal forces are not new. They occur in any curved segments of

current-carrying plasmas. In the laboratory, these forces are well-

understood. However, laboratory plasmas are typically surrounded by vacuum

which in turn is enclosed in rigid metallic containers. In addition,

magnetic fields are applied by external coilp to balance the toroidal

"orces. In the solar and astrophysical environments, magnetic and current

structures are usually embedded in plasmas, and are not 9urrounded by

metallic containers. The effects of toroidal 'orces in such -nvironmentp



have not been fully investigated. The question which is the motivation of

this paper is how the toroidal forces may act in solar current loops, and

if and under what conditions these forces may be important.

In Paper 1, some equilibrium aspects of the toroidal forces were

considered. In the present paper, we will study the dynamical behavior of

a model current loop. In order to elucidate the physics of toroidal forces

unambiguously, we will construct the simplest possible model that can

isolate the essential effects of toroidal forces. The model consists of a

current loop embedded in a field-free background plasma. How. does such a

current loop behave under the action of toroidal forces alone ? That is

the scope and the question we address in this paper. As a result, we will

neglect from the present calculation some properties which are not directly

related to the toroidal froces. For example, the possible interaction of

the current loop with the ambient magnetic fields (see, for example,

Mouschovias and Poland, 1977; Osherovich and Gliner 1983) will not be

considered. The role of gravity will not be emphasized because toroidal

forces occur with or without gravity and, for the examples in this paper,

it turns out to be unimportant. However, gravity can be included for the

dynamics of the apex in a straightforward manner and will be discussed

briefly (Sec. IV). The understanding gained here can then serve as a basis

for generalizing the model to more complex and realistic systems.

We will start with a current loop which is initially in equilibrium

and calculate its time-dependent behavior in respcnse to perturbations o f

the major radius (Sec. II). The theoretical framework will be first

presented, followed by a numerical calculation of the long-time evolution

of loops including the drag force due to the ambient gas (Sec. III). We

then discuss the behavior of a loop carrying a relatively large current,

which may not be in equilibrium initially. Although no attempt to model

specific systems will be made, we will discuss the potential reilvance c'

the results to plasma activities in the corona (Sec. IV). It will be shown

that a current loop acting under the influence of toroidal 'orces a,3r mimic

certain dynamical effects in which plasma motion is important.

4I
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II. DYNAMICS OF A MODEL CURRENT LV*)P

In the present analysis, we consider the evolution of an isolated

current loop which is initially in stable MHD equilibrium. The equilibrium

and stability properties of one class of current loops have been discussed

in Paper 1. Figure 1 shows schematically a model current loop with a

toroidal current density Jt and poloidal current density Jp. The

associated magnetic field components are Bp and Bt, respectively. The loop

is embedded in a high-temperature plasma of pressure Pa" We allow the

current to close in or below the photosphere to satisfy current

conservation. Thus, the current loop is such that its lower part is

anchored in a much denser plasma. However, no particular current

distribution will be specified below the photosphere.

The ambient plasma is assumed to have a gravitational scale height

H. In the solar corona, H is given by

2kT
H a

mig

where k is the Boltzman constant, Ta is the ambient plasma temperature, mi

is the ion'mass and g is the gravitational acceleration which is 2.7x10 cm

sec- 2 at the surface. At the base of the corona, H is of the order of 10
5

km.

A. Toroidal Forces

As discussed in Paper 1, a semi-torus of a uniform radius of curvature

(major radius) R and a minor radius a is used to model the basic toroidal

properties of a current loop. We assume that the aspect ratio is large

with R/a of 5 to 10. The local force density f acting on an element of the

loop is given by

f 1 - J x B - Vp, (1)

where J - (c/4w)V x B. In this paper, the displacement current is

neglected. We integrate f over a section of the torus to obtain the major

radial force per unit length (Shafranov, 1966):

5
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a .
I t•2v 0 dr rJt .

2

The quantity p is defined by

a
I p 2rf- rJ

a ,(3)B218
p B 2/8W

P

where p is the average internal pressure of the loop, Pa is the ambient

pressure and B - B p(a) is the poloidal magnetic field at the outer edge of

the loop (r - a). Note that the toroidal effects are relatively

insensitive to the assumption of uniform R/a because of the logarithmic

dependence. The quantity 1. is the internal inductance term,

characterizing the minor radial current distribution, and I. ranges from 0
1

for a surface distribution to 1/2 for a uniform current distribution. In -

eq. (2), mass flow along the loop is also neglected because the toroidal

forces occur with or without such flow. Moreover, mass flow is important

only if the flow velocity is comparable to the Alfven speed in the loop.

The above expressions (also eqs. [31] and [32] to be used later) are

appropriate for current-carrying plasmas embedded in a conducting plasma

with no metallic containers and properly satisfy the requirements of the

virial theorem (Shafranov, 1966). As noted before, this is an important

difference from such laboratory systems as tokamaks. These equations do

not depend on the detailed minor radial distribution of current and

pressure. Only averaged or integrated quantities such p and I. are needed.

As the initial configuration, we will adopt a model equilibrium loop

of the type discussed in Paper 1. In this class of equilibrium loops, the

toroidal forces are explicitly balanced. Here, we give a brief summary of

equilibrium and stability properties. In equilibrium, the force density f

acting on each element of the loop is zero. Therefore, we have F = 0 in

equation (2). This then gives

7

8 in 8LR I--! (14)

a 2 2

6
.I,,

Se:



Since Ii/2 is smaller than the other terms, we will adopt, for convenience,

a surface current model and set L. - 0 henceforth. For R/a of the order of
1 1

10, we see that B < 0 in equilibrium. It is convenient to define the
p

total poloidal current by

aI 2rR a dr
Ip 0 P

For the surface current model, we have

21
Bt = (5)

with Bp - 0 and p - p inside the loop. Outside the loop, we have

2t
B - (6)
p cr

with Bt = 0 and P - Pa" Using these expressions, $p can be calculated from

equation (3). It is also easy to see that, in equilibrium,

Bp . 1 - B2(0)/B2(a). (7)
p

This condition is determined from the minor radial equilibrium and has

already been incorporated into equation (2). In the above expressions, the

correction terms of the order a/R due to the simplification of half-torus

above the photosphere are neglected. It can be shown that the stability

conditions for the sausage mode, kink mode and the Mercier criterion are

satisfied. For a more detailed discussion of equation (2) and the

equilibrium/stability properties as applied to the solar environment, the

reader is referred to Paper 1.

B. Dynamical Instability

In this section, we investigate the stability properties of the

equilibrium loop with respect to major radial perturbations. In our simple

model, the perturbation 6R is applied uniformly to the semi-torus. In

7



reality, the footpoints are essentially immobile on the relevant time

scales so that distortions in the semi-,toroidal geometry will in the

nonlinear stage. However, the toroidal effects are relatively insensitive

to such distortions since they depend on the aspect ratio as in(8R/a). In

addition, for the analysis in this section, perturbation amplitudes can be

arbitrarily small so that we expect the geometrical simplification to

provide a good approximation to the linear behavior of the loop.

As the major radius is displaced from its initial equilibrium

position, the forces experienced by the loop can be given by linearizing

equation (2):

12
d2 (6R) It ).R a (8)

dt 2  c2MR R a -

2-Here M - wa p Sa is the change in the minor radius and p is the average

mass density inside the loop. The quantity 68 is obtained from equation
p(3):

6- 6pa B
68 p 2 28p B (9)

B ?r
p

where 6p is the change in the average internal pressure and

6P 6R(10)
a HPa'

where H is the gravitational scale height.

Due to the small resistive dissipation, flux conservation is

approximately satisfied. The toroidal flux conservation gives

2
B a - constant (11)
t

and the poloidal flux conservation gives

LTI - @T I constant. (12)T t T

Here, (T is the total poloidal flux and LT is the total self-inductance of

the current distribution including the submerged part (Figure 1). Note

"A=

% -. % - ,23, ,' - "w, =. .'. . " "• ,,"" . . ."" "' ""z''-'f %"r "" k" - ,' ." w"%"-* ., % w' '8 "



that current conservation requires only that there be some current. Given

a current, the total flux *T and inductance LT can be unambiguously defined
(albeit not necessarily measured) without specifying details of the

underlying current structure. We can define the inductance Lp associated

with the poloidal flux above the photosphere by

0
L

p It

where the total poloidal flux is *T - p + (s. Then, we define

0 L
C M _R (13)L

0T L T

This quantity c is a rough measure of the relative "size" of the loop above

the phot 'phere and the entire current structure. Note that the inductance

Ls of the submerged current is not calculated. It is used as a parameter

to characterize the gross circuit effects.

We have described the essential ingredients of the model. We will now

attempt to calculate more specific properties. In order to keep the

physics transparent, we will assume minor radial equilibrium. This is not

necessary for the analysis and, as will be seen later (Sec. III), gives an

accurate result. For the dynamics of the loop interior, we assume that the

current loop is thermally well-insulated from the corona on the relevant

time scale so that the adiabatic expansion law is valid:

p Y constant

2 2
where Y is the adiabatic index and where V = R is the volume of the

loop. Then, we have

6p = - a2 + R). (14)
a R

Next, from toroidal flux conservation, equation (11), we obtain

Bt -2a 
(15)

B t  a

From the definition of Bp, we find

9.



6B 61 6a
- R .- - (16)

Bp It  a

It is convenient to note that 6Bp can be rewritten as

6p M (. p )-C d

where L - tn(8R/a) - 2. In order to find 6It, we assume that the changes

in the total inductance are primarily due to changes in the loop above the

photosphere since the submerged current structure is much less mobile,

being embedded in a much denser plasma. Then, we have

Lr 6L p.

From equation (12), we obtain

61t  6LpI " "C P (17)
It L

where Lp /LT .  For a semi-toroidal plasma of major radius R and minor

radius a (/a >> 1), we have (Bateman, 1978)

2wRp 2[ in (LE) - 2] (18)
ca

with Z. = 0 and

61It +R Ed1[ ]} R

I t 1 -1 a dR R

In order to determine da/dR, we must relate the ,changes in the pressure to

changes in the field. Using the expression for 8 and variations in the

pressure terms, we obtain

2 2
B p p 6 6B

ap -s 6 - 2(1 , a ) r)Bp

Combining the preceding results and after some straightforward algebra, we

find

10



d a B B2  B2
Ta"a p [ + (i -2p + Pa -.y "

(19)

For the parameter values to be used later, this quantity is roughly 0.1

even when the expansion velocity is not infinitesimal. Using these results

in equation (8), we finally obtain the linearized equation for major radial

perturbation:

22d 2(6R) - t 1  ( a) + 2(1 ^8 R[( + L1 (

dt2 2MR - a dR p addt c2MR .

+ L- . (20)

If we set c - 0 in this equation, we find that the right hand side is

positive, indicating that the perturbation can grow. If we set e - 1, we

find that (R/a)(da/dR) << 1 for typical value for solar current loops

(e.g., R - 105 kin, a - 104 kin, Pa - a few dynes cm 2). Thus, the right

hand side of equation (20) is negative. This means that the loop is stable

to major radial perturbations. Thus, there exists a quantity ccr with

0< < 1 (21)cr

such that the d 2(6R)/dt2 - 0 for c - £cr* By setting the right hand side

of equation (20) equal to zero and after some algebra, we find

B
2

-C [( 1 28) A Yp ) + 2(8R ) (1 2p + 2YP]
crp H~ a 8Yp)

B2  ~1

X- 2(-R) + 2(1 -8)PaL. 2Y in -1 + Y]

B2  _-1
+ "(2)(i - 8 L[ ain ( )] (22)

8,f p p a 2

A current loop with E < e is unstable to major radial perturbations and a

loop with c > ccr is stable. For solar current loop parameters, Ecr is

typically 0.1 to 0.2 (Sec. III). The quantities £ and ccr are important

for the dynamics of current loops and have the following simple physical

~ ~ ~~ % rNO ~. , -,. . 1. '~ C ' % ~ *j%*



interpretation. For e < c << 1, the loop above the photosphere is a

small fraction of the entire current distribution. As the loop expands,

the changes in the loop magnetic field and average internal pressure are

relatively small in comparison with the changes in the ambient pressure.

In particular, 68 > 0 so that the loop is unstable. For e > £cr' the loop
p r

is a larger fraction of the total current. The magnetic field and internal

pressure decrease more rapidly in such a way that the displacement is

restored. In a sense, this is simply a statement that the behavior of the

loop depends on the rest of the "circuit". The essential ingredient for

this effect is that the current structure is embedded in two distinct

regions, one dense and the other much less dense.
For the unstable case, equation (20) yields the exponential growth

time T given by

It

1+

It is significant to note that r a I so that unstable loops with larger

It linearly grows faster. Note also that MR is the total mass in the semi-

toroidal loop so that it is independent of time since we assume no mass

flow to or from the submerged regions. For the stable case, the loop can

oscillate about the equilibrium position.

At this point, it is useful to consider the energy budget of a

dynamically evolving current loop. The total magnetic energy of the semi-

toroidal loop above the photosphere is the sum of the poloidal magnetic
energy Ep and toroidal magnetic energy Et where

1 2
Ep = LpIt, (24)

and

B2B
t

Et - r ("'2a 2R), (25)

with L given by equation (18). Using the principle of virtual work, we

find

12



2

F - [n8 R )  (26)
C2 a

and

F -
2  (27)

t 2c2

where Fp and Ft are the major radial forces acting on the entire loop due

to JtBp and JpBt , respectively. It is straightforward to show that the

total pressure force in the major radial direction is
2

It

F2p - ff (28)

Figure 2 shows the various local force components. Locally, the two

components of the Lorentz force are both along the minor radius as shown.

However, when these forces are integrated over the toroidal volume, we see

that JtBp contribution points outward along the major radius (eq. [26]) and

JpBt contribution points inward (eq. [27]). This is entirely due to the

curvature of the current distribution. If we add these three forces and

divide it by nR to get the total force per unit, then we recover equation

(2), providing a heuristic derivation. The expression for Fp shows that as

the major radius expands, the Bp component does work on the loop, losing

energy to the loop. At the same time, the loop does work on the Bt
component so that the Bt component gains energy as the loop expands.

Because the minor radius expands, the internal gas and Bt do work against

the ambient pressure and lose energy. On balance, there is a net loss of

poloidal magnetic energy to the kinetic energy of the loop. A fraction of

this energy is then converted to thermal energy via drag heating.

C. The Behavior of an Expanding Current Loop

In the preceding section, we have described the major radial stability

properties of a model current loop embedded in a gravitationally stratified

background plasma. In this section, we will discuss a simple picture of

the long-time behavior. The scaling behavior obtained here will be useful

for interpreting the numerical results to be discussed in the next

section.

13



As the loop expands, the velocity of the apex increases and the drag

on the ambient gas becomes important. As a simple model, we write

(Tritton, 1977)

F2 c nmiaV2, (29)

where Fd is the drag force per unit length, V - dR/dt is the velocity of

the loop (i.e., the apex), na is the local ambient density and cd is the

drag coefficient. An orderof.magnitude estimate for the characteristic

velocity in the nonlinear expansion phase can be obtained by equating Fd to

the driving force F given by equation (2). We note that the quantity in

the square brackets is of order unity and we obtain

2 y4'1/2 :

V* - It(cdmic naRaY a .. (30)

After a period of expansion, a loop may attain saturation velocities of the

order of V,. Some loops may not saturate nonlinearly. Some loops may

reach "second" stable equilibrium after periods of expansion.

1/2 wEquation (30) shows that V* is proportional to It /na /. If we

estimate V, by taking It - 5 x 1010 A, na -4 x 109 cm' 3, R 105 km, a -

10 km and using cd - 1, then we find V- 2 x 10 km sec " . It is of

interest to compare this value, an order-of-magnitude estimate, to the

sound speed C5 in the corona:

2kTa)1/2

C-

For Ta - 2 x 106 K and Y - 5/3, Cs - 2.4 x 102 km sec' I. Although the

actual expansion velocity depends on c, the above comparison indicates that

the peak velocity of the apex can be of the order of the sound speed under

the action of toroidal forces. It will turn out that equilibrium loops of

the type used here can only produce subsonic expansion. However, if a loop

is allowed to be out of equilibrium initially, carrying a sufficiently

large It. then it can be driven supersonically, or super-Alfvenically for

magnetized ambient plasmas.
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III. EVOLUTION OF MODEL CURRENT LOOPS

In the preceding sections, we have discussed in detail the linear

dynamics of toroidal current loops in a background plasma. The analysis is

limited to the linear behavior (6R/R << 1) and the description of the long-

time behavior has been confined to scaling laws. We will now attempt to

provide a more quantitative discussion of the nonlinear behavior by

numerically integrating the equations of motion for the model loop.

Numerical examples compatible with the solar environment are given to

illustrate the range of behavior under the action of toroidal forces. The

basic physics, however, is not limited to the sun.

As an initially semi-toroidal loop expands, the anchoring of

footpoints in the photosphere cause the loop to deviate from the semi-

toroidal geometry. The aspect ratio is no longer uniform. However,

inclusion of non-unifom expansion would complicate the analysis

unnecessarily inasmuch as the basic toroidal forces are affected only

as in(8R/a) by geometrical distortions, a mild dependence on the aspect

ratio. The correction due to geometry is expected to be quantitative,

rather than qualitative. In our analysis, we do not ponsider the

geometrical distortions. Accordingly, the applicability of the results

will be limited to the dynamics of the apex, which remains nearly semi-

toroidal. This limitation is similar to that of Anzer (1978). For an

improved geometry, see, for example, Anzer and Poland (1979). Although we

do not calculate the motion of the loop near the footpoints, the inductance

relates the dynamics of the apex and the rest of the current.

In the analysis of Sec. II, we have used the minor radial equilibrium

condition, equation (7). As the expansion velocity increases, however, the

so-called ramipressure contribution becomes important. To allow the

possibility of rapid expansion, we calculate the dynamics of the minor

radius separately. We replace equation (2) with (Shafranov 1966)

2 B2
2a I B
d at

dt wa~l - (-i - (31)
dt 2  rc2a 3;m. B 2 p
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2 2dt 8 1 B 2anam.
d2 22t [Ln(L) p 2 B 1]- C---)V, (32)

dt wc a2Rm.B
V

where B, Bt and Bp are defined by equations (3), (5) and (6), "

respectively. Because we assume that there is no net mass flow into the I

loop, we have taken the quantity wMR, the total mass of the loop above the

photosphere, as constant in time. Higher order nonlinearities are

neglected for simplicity. In. equilibrium, we recover equations (2) and

(4). We have directly integrated the above set of equations for a variety

of loop parameters. We have found that equation (7) is nearly true even

for velocity V up to 0.5C s . As indicated by equation (19), da/dt is found

to be typically one tenth of dR/dt so that the minor radius is essentially

in equilibrium for small to moderate dR/dt. This justifies, a posteriori, 4.,,

the use of minor radial equilibrium in the perturbation analysis.

The drag coefficient cd is based on a simple model of a straight

cylinder transverse to the flow in a compressible gas. For the subsonic

regime with a Reynolds number Re of 10 to 108, cd is 0.5 to 1 (see, 'or

example, Tritton 1977). As the velocity approaches Mach I, cd rapidly

attains a maximum value of approximately 2 at Mach 1 and decreases rapidly

for larger Mach numbers (Hoerner 1951). Physically, the drag term in

equation (32) is the force which the magnetically maintained cylinder

experiences in displacing the ambient gas. The supersonic drag coefficient

is obtained from Hoerner (1951).

In our calculation, the ambient gas is field-free. For the case with

ambient magnetic fields, the drag coefficient cd must be modified and, for

super-Alfvenic motion, MHD shocks are generated. We do not treat the

shocks per se here. The physical picture is simply that if the loop apex

is driven supersonic or super-Alfvenic, then shocks are generated. In

addition, we believe that this treatment is in fact a reasonableI

approximation unless the ambient fields are comparable to or exceed the

loop fields ('20G for the supersonic examples).

In Figure 3(a), we show the expansion velocity of the apex for a loop

with the initial equilibrium values R - 105kn, a0 - 2 x 10kn and It  4.5
x 1010 A, corresponding to B - 4.5G and Bt - 8.1G. This is a case with

relatively weak magnetic fields. The ambient pressure is taken to be Pa

2 dyn cm 2 (e.g., an active region coronal gas) at T = 2 x 10K so that the

16



number density is n 4 x I09cm"3 . For this loop, we have ecr - 0.2 (eq.cri

[22]). The values of e significantly smaller than c should give rise toor 
:

instability. Curves 1 and 2 correspond to e - 0.01 and c = 0.05,

respectively, The velocity is normalized to the sound speed C. 2.4 x

102km sec-1. These curves describe two loops of apparently identical

appearance above the photosphere with different overall current

structures. For Curve 1, the flux enclosed by the entire current

distribution is one hundred times what is above the photosphere and for

Curve 2, the total flux is 20 times what is above. Because of the low

current and weak magnetic field, these loops do not expand rapidly.

Although not shown here, these loops continue to expand slowly even after

one hour with the major radius reaching 1.5 to 2 times the initial

values. The expansion is nearly exponential for the first 20 minutes. In "

Figure 3(b), the major radial behavior is shown for the loops. In general,
with other parameters being equal, loops with smaller values of

E < E cr expand mori rapidly to larger values of R, and in cases where

loops can attain "second" equilibrium, they do so earlier and at smaller

values of R. Also, as a loop expands, the expansion tends to slow down.

One reason is that the current and magnetic field decrease. Another reason

is that e(t) increases, reducing the tendency for instability and sometimes

reaching a second equilibrium.

In Figures 4(a) and (b), we show the behavior of a smaller loop with

R - 104km, a0 - 2 x 103km. The current is It - 4.5 x 109A so that B =

4.5G and Bt - 8.1G. The magnetic field is the same as the case described
in Figure 3. For this case, we find Er= 0.1. Curve 1, corresponding

to e - 0.01, shows that the velocity reaches a maximum value of roughly

0.45C with a rise time of 4 minutes and decreases slowly for some time.

During this time, the Lorentz force is nearly balanced by Vp and the drag

force. For c - 0.05 (Curve 2), the velocity attains a maximum and vanishes

at t - 14 min. Subsequently, the apex executes damped oscillation about a

new equilibrium position, R 3 x 104km. The period is roughly 5 min.

In general, smaller loops have shorter e-folding times (eq. [32]).

This is because of the reduced inertia. Loops with larger currents I also

have shorter e-folding times because of the increased Lorentz force. In

Figures 5(a) and (b), we show an example with larger currents. The loop is

. %
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not in equilibrium initially. The parameters used are R = 105km, a0  2 x

104km and It - 2.1 x 1011A so that Bp . 21G and Bt - 22G. The size is the

same as the example in Figure 3 but the current and magnetic field are

stronger. Curve 1 corresponds to £ - 0.01 and the loop attains Mach 4 in

about two minutes. The major readius increases to about 2 x 105km during

this time. At t - 14 min, the apex velocity is approximately V/C. 5 or

V : 1200km sec- I and the major radius has increased to R - 10 x 105 km.

Subsequently, the expansion velocity slowly decreases over tens of minutes

as the loop expands. Curve 2 corresponds to c - 0.1 and the configuration

is slower than that described by Curve 1. The apex attains Mach 3.5, the

maximum velocity, in about 2 minutes. The velocity then slowly decreases
-100 m sn

from 600 km s to -200 km s- 1 in about 30 minutes as the loop expands.

For smaller currents, the velocities are smaller. From Figures 3 - 5, it

is clear that a wide range of behavior is possible under the action of

toroidal forces.

In the examples given in Figures 3 and 4, the major radius expansion
has been relatively limited so that the errors due to geometrical

distortions are expected to be minor. In Figure 5, the major radius

increases to about 1 x 106 - 2 x 106km. However, the sharpest increase in

the velocity occurs for R less than about 2R., with only moderate b.

geometrical distortions. Therefore, we expect the essential behavior to be

well described within the geometrical simplification. 'a

IV. PHYSICAL IMPLICATIONS AND DISCUSSION

We have described the dynamics of the apex of a model current loop

embedded in a stratified background plasma. The structure is such that the

semi-toroidal section of the loop is in the upper tenuous plasma while the

remainder of the current distribution is embedded in the much denser

plasma. The dynamical properties obtained are most applicable to the apex

of the semi-toroidal loop. We have constructed the model in such a way

that the model loop behavior is primarily determined by the toroidal

forces. In this section, we will attempt to understand the possible roles

the toroidal forces may play in the behavior of solar current loops. a-

Clearly, the tenuous plasma would correspond to the corona and the dense . N?

lower background would correspond to the subphotospheric gases.

18
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Observationally, it is not always easy to determine the magnetic

structure or its motion. However, a signature of motion can be manifested

as heating of coronal gas and moving gaseous material. Here, we will

examine some possible observational implications. For this purpose, it is

instructive and useful to consider the rate at which the magnetic energy is

converted to thermal energy via the drag force. We have calculated the

quantity

dE Fd(d R)

dt dt

for the model loops described in the preceding section. Here, Fd is the

drag force given by equation (29) and dE/dt is the rate at which the

ambient gas undergoes drag heating due to the apex motion. In calculating

this quantity, we have assumed that only one third of the semi-torus

around the apex is effective in drag heating. As the above expression

indicates, the heating rate is proportional to V3 . We have also computed

the time-integrated total energy which the magnetic field loses by

accelerating the loop plasma and drag heating. This quantity is

essentially equal to the time-integral of dE/dt and the loop kinetic

energy. As pointed out before, the minor radial expansion is found to be

about 1/10 of the major radial expansion so that it is negligible for the

energy budget in comparison with the major radial expansion.

In Figure 6(a), we have plotted the energy release rate due to drag

for the loop described in Figure 3(a). For e - 0.01 (Curve 1), the energy

output rate is roughly 5 x 1025 erg sec -1 at t = 20 min and increases to 3

x 1026 erg sec I . During this time, the major radius increases from 1.2R 0

to 2RO. Before t = 20 min, the loop exhibits only slow motion and

insignificant energy output. For E - 0.05 (Curve 2) the loop motion is

less pronounced with the energy release rate in the range of 1025 erg sec
- I

during t -20 min to t- 30 min. Figure 6(b) shows the time--integrated

energy converted from the magnetic field to thermal and kinetic energy.

For e - 0.01 (Curve 1), the total amount of magnetic energy released is
roughly 3 x 1029 erg while, for c= 0.05 (Curve 2), it is 1.5 x 1029 erg.

For both cases, roughly one half of the energy is in the form of thermal

energy. In Figure 7(a), we show the drag heating rate for the loop

described in Figure 4. For this case, the apex region of rapid motion is
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smaller and the region for drag heating is correspondingly smaller. Thus,

dE/dt is also smaller than the preceding case. For Curve 1 (c - 0.01), the

maximum heating rate is roughly 2.3 x 1024 erg sec-1 and it slowly

decreases with time. For Curve 2 (e - 0.05), the loop reaches a second

stable equilibrium and no significant energy release takes place

subsequently. Figure 7(b) gives the time-integrated total magnetic energy

release. In Figure 8, we give the energy output profile for the loop

described in Figure 5. For this loop, the magnetic field components are

roughly 20G and the apex can be driven supersonic with correspondingly

greater magnetic energy release. However, this loop is not initially in

equilibrium in the context of the present model. For Curve

1 (c - 0.01), the maximum energy release rate is roughly 1029 erg sec -

with a time-integrated total of 2 x 1032 erg in 30 minutes. Curve

2 (e - 0.1), shows an energy output profile in which the peak heating

occurs in a duration of 10 minutes with a long decay phase lasting for tens

of minutes. The total energy released is roughly 2 x 1031 erg in 30

minutes. For these two curves, there is a possibility of strong shock

heating.

It is of interest to estimate the temperature of the ambient gas which

is heated by the supersonic motion of the apex. For strong shocks

(M 1 3), the temperature T, behind the shock front can be determined by

(Landau and Lifshitz, 1959)

T ~ [y 2  2
[2YM (y'1)][(Y-1)M + 21

a (Y+I) 2M2

where M is the Mach number of the shock and Ta is the ambient

temperature. Taking M - 3 (Fig. 5(a)) and Y = 5/3, we find T* 3 .7Ta .

Using Ta = 2 x 106K, we find T, = 7.4 x 106K. For larger values of M, the

temperature is higher. Thus, in this particular example (Curve 2), the

coronal gas in the vicinity of the apex could be heated to approximately

107K and the heated blob of gas would be seen to be travelling away from

the surface at - 700 km sec with a peak value of - 800 km sec -  This

phase can last for tens of minutes with the velocity and heating

diminishing with time. For Curve 1. the velocity is considerably higher

(-1200 km -1) with greater heating rate and temperature. The behavior of

the heated gas suggested by Curve 2 of Figures 5 and 8 i. rominiscent of
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moving Type IV bursts. Curve 1 indicates the possibility that a loop can

be driven by the toroidal forces to high velocities for extended periods of

time, with the apex velocity levelling off at and slowly decreasing from

several hundred kilometers per second. These velocities are suggestive of

the velocities of fast coronal mass ejections (MacQueen et al 1974; Gosling

et al 1974; Gosling et al 1976; Hildner 1977). Note that we do not imply

any identification of the bright leading edges of CME's with bow shocks.

Anzer (1978) has described a loop-type transient model. The

underlying physics is similar to that of our model in that both models use

the Lorentz force to drive current loops. In Anzer's work, it was found

that magnetic fields of iG can drive coronal transients. In our model, we

estimate the necessary magnetic fields to be greater. Because of some

obvious differences such as the neglect of gravity in our analysis, precise

comparisons are not attempted. Nevertheless, we can qualitatively

understand the differences. In Anzer's model, the poloidal current density

Jp and pressure gradient are neglected. In the toroidal geometry, the

force JpBt acts to counter the expansion of the apex. Furthermore, the

ambient pressure which also acts to oppose the expansion is neglected. The

only retarding force is gravity. In our examples, with magnetic fields of

10 - 20G in the lower corona for the supersonic examples (Figs. 5 and 8),

gravity is unimportant (see below). Thus, Anzer's model tends to require

smaller magnetic fields than our model to drive current loops to a given

velocity. In addition, the current loops used by Anzer are much larger,

initially 0.5R to 1R . In our model, the magnetic field is also weaker at

comparable altitutes. Taking, for example, Curve 1 of Figure 5, we find

that at T - 30 min, R - 3R , the magnetic field is roughly 8G. For Curve 2

at T - 30 min, R - 1.3R , the magnetic field is roughly 4G.

In our model, the inclusion of ambient coronal gas allows conversion

of magnetic energy to thermal energy. For Curve 1 of Figure 5, the

expansion velocity is several hundred kilometers per second for tens of

minutes and possibly much longer. Although the loops described by Figures

5 and 8 expand to the extent that the geometrical assumptions in the model

are not likely to be valid, they do suggest that the toroidal forces may

play a contributing role in dynamical effects such as corornal mass

ejectiors. We reiterate that the behavior described here is primarily due

to the toroidal forces.
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In the examples treated in this paper, the role of gravity has not

been considered. For some phenomena (e.g., coronal mass ejections),

gravity may be important. For the apex of a loop, gravity acts along the

major radius so that it is straightforward to include the gravitational

force FG where

2
FG - a mig(n - n). (33)G i a

Here, FG is the gravitational force per unit length acting on the apex and

g is the gravitational acceleration. For the sake of generality, we have

included both the ambient density na and the average internal density n.

If n > na (e.g., coronal transients), FG is downward. If n < na, then the

structure is buoyant and FG is upward. Inclusion of gravity will tend to

reduce the expansion velocities if n > n . On the other hand, the current

can be increased to enhance the expansion speed. In fact, for magnetic

fields of 10 -% 20G, the toroidal forces dominate the gravitational force.

For example, for the supersonic loop depicted in Figure 5 with a density of

109cm&'3 , the toroidal forces are of the order of 1010dyn cm while FG is

of the order of 108dyn cm i. Thus, the basic tenets of toroidal effects

remain qualitatively valid with the addition of gravity. In this paper,

the objective is not to model specific phenomena such as coronal mass

ejections but to understand unambiguously the general physical effects of

toroidal forces in the solar environment and to describe the range of

behavior that may be exhibited by current loops. The reader interested in

the effects of gravity may include equation (33) in equation (32).

In summary, we have described the behavior of simple semi-toroidal

current loops under the action of toroidal forces. It has been shown that

such loops are capable of exhibiting a wide range of dynamical behavior.

Starting with MHD equilibria with the toroidal forces explicitly balanced,

loops can expand with a wide range of subsonic velocities and a

correspondingly wide range of magnetic energy output. Some loops can

attain second equilibria. The typical time scales for motion and energy

release are tens of minutes. Given loops initially in equilibrium, the

subsequent motion seems to be subsonic with relatively slow heating of the

coronal gas. This process may contribute to coronal heating. If we start

with nonequilibrium loops carrying large currents, they can attain highly
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supersonic (or super-Alfvenic in magnetized ambient plasmas) expansion

velocities with rapid heating due to shock heating. This process may play

a contributing role in certain energetic processes following onset of

flares (loss of equilibrium ?) such as loop expansion, moving Type IV

bursts, and mass ejections.

A novel but somewhat unconventional feature of the model is the

explicit inclusion of submerged current distributions in the dynamics of

the loop. As pointed out previously, the present model does not depend on

any details of the submerged current distributions. The influence of the

submerged current on the loop dynamics is contained in the quantity E , the

ratio of inductances, defined by equation (13). The physical reason for

this behavior is discussed in Sec. II.B. Although not measurable in

reality, this is an unambiguously definable and physically meaningful

quantity. An implication is that two loops of identical appearance above

the photosphere can behave differently depending on the underlying current

structures (i.e., different E).

In our model, the current loop above the photosphere is connected to

the submerged structure via magnetic flux tubes going through the

photosphere. The flux tubes serve as a conduit for electromagnetic and

%other processes. Thus, the properties of the loop above the photosphere

can be influenced by the underlying current. This is a plasma analogue of

a "battery and wire" system with the battery inside a metallic box and the

load outside. In fact, the submerged currents can also serve as an

additional reservoir of magnetic energy in some cases. In this paper, we

have not addressed the issues concerning the details of possible transport

mechanisms in plasmas. An adequate consideration of these issues requires

some knowledge of subphotospheric currents and plasma properties. One

possibility might be that the subphotospheric magnetic structure associated

with a current loop would consist of complex flux tubes which confine high

magnetic fields determined by hydromagnetic force-balance and flux

conservation. We have left these issue.s for future research.

The present analysis has been based on one class of equilibrium and

certain nonequilibrium current loops. Much work is needed to identify

other types of configurations and quantitatively assess the effects of

toroidal forces. We have presented a simple model to illustrate the basic
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physics and possible effects of toroidal forces. Various improvements, P
some of which have already been mentioned, need to be made before it can

be realistic. Nevertheless, it appears that current loops under the action

of toroidal forces can mimic certain energetic effects exhibiting motion in

the corona.
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field B are shown. The subscripts "t" and "lp" refer to the.."

toroidal and poloidal directions, respectively. No particular

structure need be specified below the photosphere.
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Fig. 2 Forces acting on a toroidal current loop. The components

JpBt , Vp, and JtBp act along the minor radius (a). The "toroidal

forces" acting along the major radius (R) are Fv , the pressure

force and FL, the Lorentz force. At high velocities, the drag

force Fd acts in the opposite direction to V. The drag force due

to minor radial expansion is neglected.
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Fig. 3 Behavior of a model loop initially in equilibrium with R 1 05 kau

and a =2 x 10 4km. c~ 0.2 (eq. [22]). For both figuresq,Curve S

1 is c 0.01 and Curve 2 is c - 0.05. Ca)Velocity profile

normalized to the sound speed C. 2.4 x 10 km see'. (b)MaJor

radius profile.
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Fig. 4 Behavior of a model loop initially in equilibrium with R - 104km

and a - 2 x 10 3 km. Ecr = 0.1 (eq. [22]). Curve I is c 0.01 and

Curve 2 is c - 0.05. (a)Velocity profile. (b)Major radius

profile.
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Fig. 5 Behavior of a nonequilibrium model loop with R 1 10 5 kmand a - 2 x

104km. The quantity E does not apply to nonequilibrium loops.er

Curve 1 is c - 0.01 and Curve 2 is c - 0.1. (a)Velocity

profile. (b)Major radius profile.
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Fig. 6 Magnetic energy released by the model loop of Fig. 3 (R - 10 5 km

and a - 2 x 104km). Curve I is E - 0.01 and Curve 2 iS E = 0.05.

(a)Rate of drag heating near the apex. (b)Total magnetic energy

released as drag heating and kinetic energy. Drag heating is

roughly oneihalf of the total energy released.
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Fig. 8 Magnetic energy released by the nonequilibrium loop of Fig. 5 (R

1O5 km and a - 2 x 104km). Curve 1

is £-0.01 and Curve 2 is c - 0.1. (a)Rate of drag heating near

the apex. (b)Total magnetic energy released as drag heating and

kinetic energy.
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